associative bond formation process on introducing the stabilizing anions. This is most probably related to the totally different solvation shell in the case of NiL^{2+} and $\{NiL^{2+},X\}$ species, which assists the reaction with HO₂[•] in a more associative way. As the redox potentials of the couples of Ni^{III}LX₂/NiL²⁺ are only somewhat less anodic than that of the $O_2^{\bullet-}/H_2O_2$ couple, most of the oxidizing power of the free radical is maintained in these reactions. If such reactions occur also with transition-metal complexes present in biological systems, the high-valent complexes thus obtained might cause a deleterious process, thus explaining the toxicity of the superoxide.

The detailed mechanism study clearly indicates that the oxi-

dations by HO₂[•] occur as predicted via the inner-sphere mechanism.

Acknowledgment. This research was supported in part by a grant from the GIF, the German-Israeli Foundation for Scientific Research, and the Israel Atomic Energy Commission. D.M. expresses his appreciation to Mrs. Irene Evens for her continuous interest and support.

Supplementary Material Available: Figures 5 and 6, giving rates of formation of Ni^{III}LX, as a function of the concentrations of Ni^{III}L(ClO₄), and HCO₂Na, respectively (2 pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, The University of Calgary, Calgary, Alberta T2N 1N4, Canada, and Laboratory of Polymer Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

Preparation and ³¹P NMR Investigations of Monomeric and Dimeric Complexes of Platinum and Palladium with 1,5-Diphosphadithiatetrazocines: X-ray Structure of $Pt(PPh_3)_2(1,5-Ph_4P_2N_4S_2)\cdot CH_2Cl_2$

Tristram Chivers,*[†] Mark Edwards,[†] Auke Meetsma,[‡] Johan C. van de Grampel,*[‡] and Arie van der Lee[‡]

Received December 12, 1991

The reaction of $Pt(PPh_3)_2(C_2H_4)$ with 1,5-R₄P₂N₄S₂ (R = Ph, Et, Me) in toluene at 23 °C produces the monomeric complexes Pt(PPh₃)₂(1,5-R₄P₂N₄S₂) (2a, R = Ph; 2b, R = Et; 2c, R = Me) as air-stable yellow solids, which were characterized by ³¹P NMR and, in the case of 2a, ¹⁹⁵Pt NMR spectroscopy. The X-ray structure of 2a-CH₂Cl₂ shows that the heterocyclic ligand is bonded to platinum in an n²-S,S' fashion with Pt-S distances of 2.408 (4) and 2.341 (4) Å, respectively, and approximately square planar coordination at platinum. The crystals of 2a CH₂Cl₂ are monoclinic, space group $P2_1/c$, with a = 22.295 (2) Å, b = 10.500 (1) Å, c = 24.268 (2) Å, $\beta = 101.10$ (1)°, V = 5575 (1) Å³, and Z = 4. The final R and R_w values were 0.062 and 0.049, respectively. The reaction of $Pd(PPh_3)_4$ with 1,5-Ph₄P₂N₄S₂ or $Pd(PPh_2Me)_4$ with 1,5-R₄P₂N₄S₂ (R = Ph, Et) in toluene at 23 °C produces $Pd(PPh_3)_2(1,5-Ph_4P_2N_4S_2)$ or $Pd(PPh_2Me)_2(1,5-R_4P_2N_4S_2)$, respectively, which were characterized by ³¹P NMR spectroscopy. Mild heating of the monomeric platinum or palladium complexes, either in solution or in the solid state, results in the dissociation of one of the phosphine ligands to give the dimers $[Pt(PPh_3)(1,5-R_4P_2N_4S_2)]_2$ (5a, R = Ph; 5b, R = Et) or $[Pd(PPh_2R')(1,5-R_4P_2N_4S_2)]_2$ (R = R' = Ph; R' = Me, R = Ph, Et). The $P_2N_4S_2$ rings in 5a act as chelating (N,S) ligands toward one platinum and form a bridge to the other platinum via the second sulfur atom to give a centrosymmetric dimeric structure. Variable-temperature ³¹P NMR spectroscopic investigations of 5a and 5b reveal a fluxional process with an interconversion barrier of 10.2 • 1.2 kcal mol^{-1} for 5a. A [1,3]-metallotropic rearrangement is proposed to explain this behavior.

Introduction

The combination of hard (N) and soft (S) basic centers bestows upon binary sulfur-nitrogen (S-N) ligands a versatile coordination chemistry, as exemplified by the multifaceted behavior of tetra-thiatetrazocine, S_4N_4 .^{1,2} With zerovalent complexes of the platinum group metals S_4N_4 produces both mono- and dinuclear complexes containing MSNSN rings (M = Pt, Pd, Ni)³⁻⁵ via the unstable adduct $Pt(S_4N_4)(PPh_3)_2$ of unknown structure.⁶ The related complexes $Ir(CO)Cl(S_4N_4)(PPh_3)^7$ and $Pt(S_4N_4)Cl_2$ - $(PMe_2Ph)_2^8$ incorporate the tridentate (N,S,S) S₄N₄²⁻ ligand formed by insertion of the metal into an S-N bond. By contrast, we have shown that the integrity of 1,5-diphosphadithiatetrazocines (1) is retained in the formation of the 1:1 complex $Pt(PPh_3)_2$ -

 $(1,5-Ph_4P_2N_4S_2)$ (2a),⁹ which loses PPh₃ reversibly upon heating in toluene at 105 °C to give the dimer $[Pt(PPh_3)(1,5-Ph_4P_2N_4S_2)]_2$ (5a).¹⁰ The structure of 5a was shown to involve the ligand 1a in an $(\eta^2-N,S-\mu, \eta^1-S')$ bonding mode,¹⁰ but the structure of **2a**

was not established by X-ray crystallography.⁹

In this account we provide the full details of these investigations, which include (a) the preparation and ³¹P NMR characterization of monomeric platinum complexes $Pt(PPh_3)_2(1,5-R_4P_2N_4S_2)$ (R = Ph, Et, Me) and palladium complexes $Pd(PPh_2R')_2(1,5 R_4P_2N_4S_2$) (R' = R = Ph; R' = Me, R = Ph, Et), (b) the preparation and ³¹P NMR characterization of the corresponding dimers $[Pt(PPh_3)(1,5-R_4P_2N_4S_2)]_2$ (R = Ph, Et) and [Pd- $(PPh_2R')(1,5-R_4P_2N_4S_2)]_2$, (c) the X-ray crystal structure of the monomer $Pt(PPh_3)_2(1,5-Ph_4P_2N_4S_2)$ (2a), and (d) a discussion

- Chivers, T.; Edelmann, F. Polyhedron 1986, 5, 1661 (1)
- Kelly, P. F.; Woollins, J. D. Polyhedron 1986, 5, 607. Ghilardi, C. A.; Midollini, S.; Moneti, S.; Orlandini, A. J. Organomet. (3) Chem. 1985, 286, 419.
 (4) Jones, R.; Kelly, P. F.; Williams, D. J.; Woollins, J. D. J. Chem. Soc.,
- Chem. Commun. 1985, 1325. (5)
- Chivers, T.; Edelmann, F.; Behrens, U.; Drews, R. Inorg. Chim. Acta 1986, 116, 145.
- (6) Bhattacharyya, A. A.; McLean, J. A., Jr.; Turner, A. G. Inorg. Chim. Acta 1979, 34, L199.
- (8)
- C.; Noltemeyer, M.; Sheldrick G. M. Angew. Chem., Int. Ed. Engl. 1986, 25, 931.
 (a) Hursthouse, M. B.; Motevalli, M.; Kelly, P. F.; Woollins, J. D. Polyhedron 1989, 8, 997. (b) Kelly, P. F.; Woollins, J. D. Polyhedron 1989, 8, 2907.
 (9) Chivers, T.; Dhathathreyan, K. S.; Ziegler, T. J. Chem. soc., Chem.
- Commun. 1989, 86.
- Chivers, T.; Edwards, M.; Kapoor, P. N.; Meetsma, A.; van de Grampel, (10)J. C.; van de Lee, A. Inorg. Chem. 1990, 29, 3068.

[†]The University of Calgary.

[‡]University of Groningen.

Table I. ³¹P NMR Data for Monomeric Platinum and Palladium Complexes of 1,5-Diphosphadithiatetrazocines

compd	$\delta^{a,b}$	$^{1}J(^{31}P-^{195}Pt)^{c}$	$\delta^{a,d}$	$^{3}J(^{31}P-^{195}Pt)^{c}$	${}^{4}J({}^{31}P-{}^{31}P)^{c}$	Δ ^e	
$Pt(PPh_3)_2(1,5-Ph_4P_2N_4S_2)$ (2a) ^{f,g}	18.3, t	2861	39.3, t	572		-74.9	
$Pt(PPh_3)_2(1,5-Et_4P_2N_4S_2)$ (2b) ^{h,ij}	18.7, t	2820	60.6, t	579		-75.5	
$Pt(PPh_3)_2(1,5-Me_4P_2N_4S_2)$ (2c)	18.7	2880	50.8	574		-69.2	
$Pd(PPh_3)_2(1,5-Ph_4P_2N_4S_2)$ (3a)	25.4, t		53.9, t		12.5	-60.2	
$Pd(PPh_2Me)_2(1,5-Ph_4P_2N_4S_2)$ (4a)	6.1, t		52.2, t		14.8	-61.9	
$Pd(PPh_2Me)_2(1,5-Et_4P_2N_4S_2)$ (4b) ^{fj}	5.9, t		73.7, t		13.5	-62.4	

^a In ppm relative to external 85% H₃PO₄; t = triplet. ^b PPh₃ or PPh₂Me. ^c In Hz. ^d PR₂ of heterocyclic ligand. ^e $\Delta = \delta({}^{31}P)$ of coordinated 1,5-R₄P₂N₄S₂ - $\delta({}^{31}P)$ of free 1,5-R₄P₂N₄S₂. ^f In CH₂Cl₂. ^g ⁴J({}^{31}P-{}^{31}P) = 4.4 Hz. ^h ⁴J({}^{31}P-{}^{31}P) = 4.5 Hz. ⁱ In toluene. ^j Not isolated.

Table II. 31	P NMR Data	for Dimeric Platinum an	d Palladium	Complexes of	1,5-Diphosphadithiatetrazocines ^a
--------------	------------	-------------------------	-------------	--------------	--

compd	$\delta^{b,c}$	${}^{1}J({}^{31}\mathrm{P}-{}^{195}\mathrm{Pt})^{d}$	$\delta^{b,e}$	${}^{3}J({}^{31}\mathrm{P}{-}^{195}\mathrm{Pt})^{d}$	${}^{4}J({}^{31}\mathrm{P}{-}^{31}\mathrm{P})^{d}$	Δ/	
$\begin{array}{l} [Pt(PPh_3)(1,5\text{-}Ph_4P_2N_4S_2)]_2 \ (\textbf{5a})^g \\ [Pt(PPh_3)(1,5\text{-}Et_4P_2N_4S_2)]_2 \ (\textbf{5b})^g \end{array}$	9.0 15.3	4160 4205	31.1 58.0	170 h		-83.0 -78.1	
$\begin{array}{l} [Pd(PPh_3)(1,5\text{-}Ph_4P_2N_4S_2)]_2 \ (\textbf{6a})^s \\ [Pd(PPh_2Me)(1,5\text{-}Ph_4P_2N_4S_2)]_2 \ (\textbf{7a})^i \\ [Pd(PPh_2Me)(1,5\text{-}Et_4P_2N_4S_2)]_2 \ (\textbf{7b})^j \end{array}$	24.7, t 9.1, t 9.2, t		57.0, d 54.8, d 76.9, d		11.1 15.1 8.6	-57.1 -59.3 -59.2	

^a At 23 °C. ^b In ppm relative to external 85% H₃PO₄; d = doublet; t = triplet. ^c PPh₃ or PPh₂Me. ^d In Hz. ^e PR₂ of heterocyclic ligand. ^f $\Delta = \delta(^{31}P)$ of coordinated 1,5-R₄P₂N₄S₂ - $\delta(^{31}P)$ of free 1,5-R₄P₂N₄S₂. ^g In CH₂Cl₂. ^h Not resolved. ⁱ In CH₂Cl₂/toluene. ^j In CH₂Cl₂/hexanes.

of the fluxional behavior of the dimer $[Pt(PPh_3)(1,5-R_4P_2N_4S_2)]_2$ $(\mathbf{R} = \mathbf{Ph}, \mathbf{Et}).$

Experimental Section

Reagents and General Procedures. All solvents were dried and distilled before use: tetrahydrofuran and toluene (Na); dichloromethane, chloroform, hexanes, and pentane (P2O5). All reactions and the manipulation of air- or moisture-sensitive products were carried out under an atmosphere of dry nitrogen (99.99% purity) by using Schlenk or drybox techniques. Commercial products were used as received: K2PtCl4 (Aldrich); Pd(PPh₃)₄, Pd(PMePh₂)₄, (diphos)Ni(CO)₂, Ni(PPh₃)₄ (all from Alfa); PPh₃ (Fisher); PPh₂Me (Aldrich); ethylene (Linde).

Literature procedures were used for the preparation of 1.5-R₄P₂N₄S₂ $(R = Ph,^{11} Me,^{11} Et^{12}), Pt(PPh_3)_4,^{13} and Pt(PPh_3)_2(C_2H_4).^{14}$

Instrumentation. ¹H and ¹³C NMR spectra were recorded on a Bruker ACE 200-MHz spectrometer. ³¹P NMR spectra were obtained on a Varian XL 200-MHz or a Bruker AM 400-MHz spectrometer with 85% H_3PO_4 as an external reference. The lock signal for ³¹P NMR was provided by sealed D₂O inserts or by using CDCl₃ as solvent. ¹⁹⁵Pt NMR spectra were obtained on a Bruker AM 400 spectrometer operating at 85.606 MHz in 10-mm NMR tubes equipped with a D_2O insert using a pulse length of 8 μ s (ca. 60° flip angle), an acquisition time of 0.279 s, a spectral width of 100 000 Hz, a relaxation delay of 1.7 s, and a data collection size of 16 K (zero-filled to 32 K before transformation). ¹⁹⁵Pt chemical shifts are given with reference to 0.2 M H_2PtCl_6 in D_2O (0 ppm). Chemical analyses were performed by the Analytical Services of the Department of Chemistry, The University of Calgary, or by Canadian Microanalytical Service Ltd., Delta, BC, Canada. Molecular weight determinations were performed by Galbraith Laboratories Ltd., Knoxville, TN, by using the vapor-pressure osmometry method.

Preparation of Pt(PPh₃)₂(1,5-Ph₄P₂N₄S₂) (2a). A solution of Pt- $(PPh_3)_2(C_2H_4)$ (0.55 g, 0.74 mmol) in toluene (25 mL) was added dropwise (25 min), by transfer needle, to a stirred suspension of 1,5- $Ph_4P_2N_4S_2$ (0.36 g, 0.73 mmol) in toluene (100 mL) at 23 °C. The solution immediately became a transparent yellow color, which darkened during the addition. After 17 h, the volume of the solvent was reduced by half under vacuum, and after 24 h at -25 °C the yellow precipitate was isolated by use of a filter needle. Recrystallization from $CH_2Cl_2/$ hexane (1:10) yielded **2a** (0.66 g, 0.56 mmol). Anal. Calcd for $C_{60}H_{50}N_4P_4PtS_2$: C, 59.55; H, 4.16; N, 4.63. Found: C, 58.55; H, 4.03; N, 4.99. Mol wt (in CHCl₃, vapor-pressure osmometry): calcd, 1210; found, 1149. ³¹P NMR data are given in Table I. The structure of **2a**·CH₂Cl₂ was determined by X-ray crystallography.

Preparation of [Pt(PPh₃)(1,5-Ph₄P₂N₄S₂)]₂ (5a). A slurry of Pt-(PPh₃)₂(1,5-Ph₄P₂N₄S₂) (0.30 g, 0.25 mmol) in toluene (30 mL) was heated at reflux. After 1 h the Pt complex had dissolved to give a yellow solution. After 6 h the reaction mixture was allowed to cool to 23 °C and a bright yellow precipitate was separated by filtration, washed with

(14) Nagel, U. Chem. Ber. 1982, 115, 1998.

toluene (5 mL), and dried under vacuum to give the dimer 5a (0.185 g, 0.098 mmol), which was recrystallized from CH_2Cl_2 /pentane (5:2). Anal. Calcd for C₄₂H₃₅N₄P₃PtS₂: C, 53.22; H, 3.72; N, 5.91. Found: C, 52.92; H, 3.79; N, 5.59. The dimeric structure of the product was established by X-ray crystallography.¹⁰ ³¹P NMR data are given in Table II.

Preparation of $Pt(PPh_3)_2(1,5-Et_4P_2N_4S_2)$ (2b) and $Pt(PPh_3)(1,5-Et_4P_2N_4S_2)$ (2b) $Et_4P_2N_4S_2)_2$ (5b). A solution of $Pt(PPh_3)_2(C_2H_4)$ (0.705 g, 0.943 mmol) in toluene (30 mL) was added dropwise (25 min) to a stirred solution of $1,5-Et_4P_2N_4S_2$ (0.281 g, 0.943 mmol) in toluene (40 mL) at 23 °C. The ³¹P NMR spectrum of the clear orange solution so formed (Table I) was consistent with the formation of 2b, but this monomer could not be isolated. After 5 days at -25 °C this solution produced an orange solid, which was recrystallized from CH2Cl2/hexanes (1:1) to give orange crystals of the dimer 5b contaminated with an impurity, which cocrystallizes with 5b. ³¹P NMR data for 5b are given in Table II.

Preparation of Pt(PPh₃)₂(1,5-Me₄P₂N₄S₂) (2c). A solution of Pt- $(PPh_3)_2(C_2H_4)$ (0.36 g, 0.48 mmol) in toluene (25 mL) was added dropwise to a stirred suspension of 1,5-Me₄P₂N₄S₂ (0.12 g, 0.50 mmol) in toluene (25 mL) at 23 °C. The pale yellow solution became orange, and after 15 h a yellow precipitate was removed by filtration. Solvent was removed from the filtrate under vacuum to give a sticky orange solid (0.37 g), which was recrystallized twice from CH_2Cl_2 /pentane (1:2) at -25 °C to give 2c (0.12 g, 0.12 mmol) as a yellow powder. Anal. Calcd for $C_{40}H_{42}N_{4}P_{4}P(S_{2}\cdot CH_{2}Cl_{2})$; C, 47.00; H, 4.24; N, 5.35. Found: C, 47.85; H, 4.65; N, 5.42. ¹H NMR (in CDCl_3): 1.44 (6 H, CH₃, d, ²J_{1H-³¹P} = 6.6 Hz), 1.37 (6 H, CH₃, d, ²J_{1H-³¹P} = 6.7 Hz), 5.3 (2 H, CH₂Cl₂), 7.1-7.6 (30 H, C₆H₅, m). ³¹P NMR data are given in Table L

Preparation of Pd(PPh₃)₂(1,5-Ph₄P₂N₄S₂) (3a). A solution of 1,5- $Ph_4P_2N_4S_2$ (0.484 g, 0.99 mmol) in toluene (40 mL)/THF (2 mL) was added dropwise (30 min) to a stirred suspension of $Pd(PPh_3)_4$ (1.14 g, 0.99 mmol) in toluene (75 mL) to give a clear yellow solution. After 3 h a yellow-green precipitate had formed. The solution was stored at -25 °C for 18 h, and then the yellow precipitate of 3a (1.10 g, 0.98 mmol) was separated by use of a filter needle. Anal. Calcd for $C_{60}H_{50}N_4P_4PdS_2$: C, 64.26; H, 4.49; N, 5.00. Found: C, 63.71; H, 4.47; N, 4.61. ³¹P NMR data, given in Table I, confirmed the purity of this product. Attempted recrystallization produced the dimer **6a**, which was characterized by ³¹P NMR spectroscopy (Table II).

Preparation of Pd(PPh2Me)2(1,5-Ph4P2N4S2) (4a). A solution of 1,5-Ph₄P₂N₄S₂ (0.114 g, 0.23 mmol) in toluene (25 mL) was added dropwise (15 min) to a stirred slurry of Pd(PPh₂Me)₄ (0.21 g, 0.23 mmol) in toluene (25 mL) to give a clear yellow solution. After 20 h the volume of the solution was reduced to 5 mL under vacuum. The resulting solution was stored at -25 °C for 18 h to yield a yellow-green precipitate, which was separated by filter needle and recrystallized from CH₂Cl₂/ hexanes (1:5) to give 4a (0.12 g, 0.12 mmol) as a lime green solid. Anal. Calcd for $C_{50}H_{46}N_4P_4PdS_2$: C, 60.21; H, 4.65; N, 5.62. Found: C, 60.30; H, 4.74; N, 5.43. ³¹P MMR data are given in Table I.

Preparation of Pd(PPh2Me)2(1,5-Et4P2N4S2) (4b). A solution of 1,5-Et₄ $P_2N_4S_2$ (0.145 g, 0.485 mmol) in toluene (40 mL) was added to an equimolar amount of Pd(PPh₂Me)₄ (0.440 g, 0.485 mmol) in toluene (40 mL) at 23 °C. After 18 h the resulting solution was filtered to remove a trace of a black precipitate. The removal of solvent under

⁽¹¹⁾ Chivers, T.; Dhathathreyan, K. S.; Liblong, S. W.; Parks, T. Inorg. Chem. 1988, 27, 1305.

Chivers, T.; Edwards, M.; Parvez, M. Inorg. Chem., in press. Ugo, R.; Cariata, F.; LaMonica, G. Inorg. Synth. 1968, 11, 105.

Table III. Crystallographic Data for $Pt(PPh_3)_2(1,5-Ph_4P_2N_4S_2)$ (2a)

chem formula C ₆₀ H ₅₀ PtN ₄ P ₄ S ₂ ·CH ₂ Cl ₂	fw = 1295.11
a = 22.295 (2) Å	space group $P2_1/c$
b = 10.500 (1) Å	$T = 25(2) \circ C$
c = 24.268 (3) Å	$\lambda = 0.71073 \text{ Å}$
$\beta = 101.10 \ (1)^{\circ}$	$\rho_{\rm calcd} = 1.543 \ \rm g \ \rm cm^{-3}$
$V = 5575 (1) Å^3$	$\mu = 28.7 \text{ cm}^{-1}$
Z = 4	$R^a = 0.062$
	$R_{w}^{b} = 0.049$

 ${}^{a}R = \sum (||F_{o}| - |F_{c}||) / \sum |F_{o}|. \quad {}^{b}R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2} / \sum w|F_{o}|^{2}]^{1/2}.$

vacuum followed by recrystallization from CH₂Cl₂/hexane (1:5) at -20 °C produced 4b (0.28 g, 0.35 mmol). ³¹P NMR data are given in Table I. An attempted second recrystallization produced a mixture of 4b and the corresponding dimer, 7b.

X-ray Analysis. A suitable, yellow block-shaped crystal of 2a·CH₂Cl₂ $0.075 \times 0.12 \times 0.22$ mm, obtained by diffusion of diethyl ether into a dichloromethane solution, was glued on the top of a glass fiber and transferred to the goniometer mounted on an Enraf-Nonius CAD-4F diffractometer interfaced to a Micro VAX 2000 computer. The scattering power of the studied crystals was weak, and no observable intensities could be measured with $\theta > 24^{\circ}$. Unit cell parameters were determined from a least-squares treatment of the SET415 setting angles of 20 reflections with 12.70° < θ < 13.47. The space group $P2_1/c$ was derived from the observed systematic extinctions h0l, l = 2n + 1, and 0k0, k = 2n + 1. This choice was confirmed by the solution and the successful refinement of the structure. Reduced cell calculations did not indicate any higher metrical lattice symmetry,¹⁶ and examination of the final atomic coordinates of the structure did not yield extra symmetry elements.17

Crystal and/or instrumental instability was monitored by measurement of the intensities of three reference reflections that were collected after every 2 h of X-ray exposure time; these reflections exhibited a linear decay of 11% during the 142.1 h of X-ray exposure time. A 360° ψ -scan for a reflection close to axial $(10,\overline{2},\overline{4})$ showed an intensity variation up to 8% about the mean value. The intensity data were corrected for the decay, for Lorentz and polarization effects, but not for absorption. Standard deviations in the intensities based on counting statistics were increased according to an analysis of the excess variance¹⁸ of the three reference reflections: $\sigma^2(I) = \sigma^2_{cs}(I) + (0.025I)^2$. Equivalent reflections were averaged $(\sum \sigma / \sum I = 0.075)$ resulting in 4332 reflections satisfying the $I \ge 2.5\sigma(I)$ criterion of observability.

The structure was solved by Patterson methods and subsequent partial structure expansion (SHELXS86).¹⁹ The positional and anisotropic thermal displacement parameters for the non-hydrogen atoms were refined with block-diagonal least-squares procedures (CRYLSQ)²⁰ minimizing the function $Q = \sum_{h} [w(|F_{o}| - |F_{c}|)^{2}]$. Subsequent Fourier summations showed density which could be correlated to the solvent molecule of dichloromethane. After the inclusion of the positional parameters of dichloromethane, the remainder of the structure refined smoothly. The overall geometry of the solvent molecule appeared rather distorted, suggesting some degree of disorder, but no resolvable disorder could be stated. The hydrogen atoms were included in the final refinement riding on their carrier atoms with their positions calculated by using sp² or sp hybridization at the C-atom as appropriate with a fixed C-H distance of 0.98 Å. Weights were introduced in the final refinement cycles. Final refinement on F_0 by full-matrix least-squares techniques with anisotropic thermal displacement parameters for the non-hydrogen atoms and one overall temperature factor for the hydrogen atoms converged at R =0.062 and $R_w = 0.049$. A final difference Fourier synthesis revealed residual densities between -1.31 and $1.51\ e/Å^3.$ The CH_2Cl_2 solvent residue is probably disordered as indicated by the thermal displacement motion ellipsoids and geometry data. Crystal data and experimental details of the structure determination are compiled in Table III. Final fractional atomic coordinates and equivalent isotropic thermal displacement parameters for the non-hydrogen atoms are given in Table IV. Scattering factors were those given by Cromer and Mann,²¹ and anom-

- de Boer, J. L.; Duisenburg, A. J. M. Acta Crystallogr. 1984, A40, C410. (15)

- (16) Spek, A. L. J. Appl. Crystallogr. 1988, 21, 578.
 (17) LePage, Y. J. Appl. Crystallogr. 1987, 20, 264.
 (18) McCandlish, L. E.; Stout, G. H.; Andrews, L. C. Acta Crystallogr. 1975, A31, 245.
- (19) Sheldrick, G. M. Program for crystal structure solution. University of Göttingen, Federal Republic of Germany, 1986
- (20)Olthof-Hazekamp, R. CRYLSQ. XTAL 3.0 Reference Manual. Hall S. R. and Stewart, J. M., Eds.; Universities of Western Australia and Maryland, 1990.

alous dispersion factors taken from Cromer and Liberman²² were included in F_{c} . All calculations were carried out on the CDC-Cyber 962-31 computer of the University of Groningen with the program packages $XTAL^{23}$ and $PLATON^{24}$ (calculation of geometric data).

Results and Discussion

Synthesis of Monomeric Platinum and Palladium Complexes of 1,5-Diphosphadithiatetrazocines. The reactions of Pt- $(PPh_3)_2(C_2H_4)$ or $Pd(PPh_2R)_4$ (R = Me, Ph) with 1,5-diphosphadithiatetrazocines proceed rapidly in toluene at room temperature according to eqs 1 and 2.

$$Pt(PPh_{3})_{2}(C_{2}H_{4}) + 1.5 \cdot R_{4}P_{2}N_{4}S_{2} \xrightarrow{-C_{2}H_{4}} Pt(PPh_{3})_{2}(1.5 \cdot R_{4}P_{2}N_{4}S_{2}) \quad (1)$$

$$2a, R = Ph$$

$$2b, R = Et$$

$$2c, R = Me$$

$$Pd(PPh_{2}R')_{4} + 1.5 \cdot R_{4}P_{2}N_{4}S_{2} \xrightarrow{-2PPh_{2}R'} Pd(PPh_{2}R')_{2}(1.5 \cdot R_{4}P_{2}N_{4}S_{2}) \quad (2)$$

$$3a, R = R' = Ph$$

$$4a, R' = Me, R = Ph$$

$$4b, R' = Me, R = Et$$

Compounds 2a, 2c, 3a, and 4a were isolated as air-stable yellow solids that could be purified by recrystallization, whereas 2b and 4b were characterized by ³¹P NMR spectroscopy in solution. Compound 2b spontaneously loses a phosphine ligand in solution to give the corresponding dimer, 5b, and 4b undergoes a similar transformation to the dimer 7b upon attempted recrystallization (vide infra).

The ³¹P NMR spectra of **2a-c** consist of two equally intense signals at 18-19 and 40-60 ppm with ¹⁹⁵Pt satellites, which may be assigned to the Ph₃P ligands and the R₂P groups of coordinated 1,5-diphosphadithiatetrazocine, respectively, on the basis of the magnitude of the ³¹P-¹⁹⁵Pt coupling constants. In the case of 2a,b, these signals were resolved into 1:2:1 triplets that result from coupling between inequivalent pairs of phosphorus atoms, ⁴J- $({}^{31}P-{}^{31}P) = 4.4$ Hz. The details are given in Table I. These assignments are confirmed by the ¹⁹⁵Pt NMR spectrum of 2a (Figure 1), which consists of a 1:2:1 triplet of 1:2:1 triplets; i.e., the platinum nucleus is coupled to two pairs of equivalent phosphorus atoms with coupling constants of 2846 and 581 Hz, respectively. The NMR data for 2a-c clearly indicate that the heterocyclic ligand is symmetrically bonded to platinum, and a molecular weight determination for 2a by vapor-pressure osmometry in CHCl₃ was consistent with a monomeric structure. An X-ray structural determination of 2a (vide infra) revealed that the heterocyclic ligand is bonded to platinum in an η^2 -S,S' fashion.

The three platinum complexes 2a-c exhibit very similar coupling constants for both the one-bond Ph_3P-Pt interaction (2820-2880) Hz) and the three-bond R_2P -Pt interaction (572-580 Hz), and so their structures are probably identical. The values of ${}^{3}J({}^{195}Pt-{}^{31}P)$ for 2a-c are remarkably large (570-580 Hz), but we have been unable to unearth appropriate literature data for comparison. We note, however, that ${}^{2}J({}^{195}Pt-{}^{31}P)$ for the bidentate (EtO)₂PS₂⁻ ligand in Pt(II) complexes falls in the range 336-445 Hz.²⁵ The effect of coordination on the characteristically low-field

- (21) Cromer, D. T.; Mann, J. B. Acta Crystallogr. 1968, A24, 321.
 (22) Cromer, D. T.; Liberman, D. J. Chem. Phys. 1970, 53, 1891.
- (23) Hall, S. R., Stewart, J. M., Eds. XTAL 3.0 Reference Manual. Universities of Western Australia and Maryland, 1990.
- (24) Spek, A. L. Acta Crystallogr. 1990, A46, C34.

Table IV. Atomic Coordinates and Isotropic Thermal Parameters for Non-H Atoms of Pt(PPh₃)₂(1,5-Ph₄P₂N₄S₂)·CH₂Cl₂

	x	У	Z	$U_{\rm eq}$, ^{<i>a</i>} Å ²		x	У	z	$U_{\rm eq}$, ^a Å ²
Pt(1)	0.21143 (3)	0.03309 (6)	0.15549 (2)	0.0330 (2)	C(27)	0.4232 (9)	0.000 (2)	0.3220 (7)	0.088 (12)
S (1)	0.19238 (18)	0.1100 (4)	0.06022 (15)	0.0395 (16)	C(28)	0.4480 (9)	-0.108 (3)	0.3061 (8)	0.085 (10)
S(2)	0.30183 (18)	-0.0536 (4)	0.13605 (15)	0.0456 (14)	C(29)	0.4085 (9)	-0.1951 (18)	0.2758 (8)	0.062 (8)
P(1)	0.2413 (2)	-0.1281 (4)	0.02765 (17)	0.0400 (17)	C(30)	0.3470 (7)	-0.1694 (16)	0.2601 (6)	0.052 (7)
P(2)	0.3160 (2)	0.1917 (5)	0.09129 (19)	0.0508 (19)	C(31)	0.2280 (6)	0.1070 (15)	0.2955 (6)	0.037 (6)
P(3)	0.24270 (18)	-0.0217 (5)	0.24998 (15)	0.0413 (16)	C(32)	0.2444 (7)	0.2325 (16)	0.2819 (7)	0.055 (7)
P(4)	0.11196 (19)	0.1026 (4)	0.15753 (16)	0.0371 (16)	C(33)	0.2382 (7)	0.3349 (14)	0.3149 (7)	0.044 (7)
N(1)	0.1972 (5)	-0.0071 (11)	0.0164 (4)	0.045 (5)	C(34)	0.2170 (8)	0.3128 (18)	0.3637 (7)	0.060 (8)
N(2)	0.2465 (6)	0.2150 (11)	0.0620 (5)	0.044 (5)	C(35)	0.2004 (8)	0.1934 (19)	0.3782 (7)	0.063 (8)
N(3)	0.3407 (5)	0.0509 (13)	0.1079 (5)	0.054 (5)	C(36)	0.2066 (7)	0.0894 (15)	0.3444 (7)	0.047 (7)
N(4)	0.2742 (6)	-0.1653 (11)	0.0914 (5)	0.046 (5)	C(37)	0.2055 (7)	-0.1642 (15)	0.2696 (7)	0.042 (7)
C (1)	0.1955 (7)	-0.2670 (15)	0.0013 (6)	0.041 (7)	C(38)	0.1584 (8)	-0.2197 (16)	0.2319 (7)	0.052 (7)
C(2)	0.2128 (8)	-0.3861 (17)	0.0243 (6)	0.050 (7)	C(39)	0.1304 (8)	-0.3284 (16)	0.2468 (7)	0.057 (7)
C(3)	0.1785 (8)	-0.4935 (15)	0.0024 (7)	0.059 (8)	C(40)	0.1483 (9)	-0.3837 (16)	0.2994 (8)	0.063 (8)
C(4)	0.1312 (7)	-0.4806 (19)	-0.0415 (7)	0.061 (8)	C(41)	0.1976 (9)	-0.3326 (17)	0.3351 (7)	0.068 (9)
C(5)	0.1149 (8)	-0.3616 (18)	-0.0645 (7)	0.065 (8)	C(42)	0.2263 (8)	-0.2212 (15)	0.3202 (8)	0.054 (8)
C(6)	0.1470 (8)	-0.2574 (16)	-0.0423 (6)	0.053 (7)	C(43)	0.0541 (7)	0.0067 (13)	0.1143 (6)	0.039 (6)
C(7)	0.2967 (7)	-0.1223 (18)	-0.0189 (6)	0.048 (7)	C(44)	0.0713 (8)	-0.0846 (15)	0.0787 (6)	0.048 (6)
C(8)	0.3130 (8)	-0.0052 (17)	-0.0377 (6)	0.062 (9)	C(45)	0.0279 (8)	-0.1556 (15)	0.0445 (6)	0.047 (7)
C(9)	0.3557 (9)	0.0026 (18)	-0.0731 (7)	0.074 (9)	C(46)	-0.0341 (7)	-0.1415 (15)	0.0423 (6)	0.048 (7)
C(10)	0.3818 (9)	-0.107 (2)	-0.0881 (7)	0.068 (8)	C(47)	-0.0503 (6)	-0.0490 (16)	0.0779 (6)	0.040 (6)
C(11)	0.3657 (8)	-0.224 (2)	-0.0696 (7)	0.069 (9)	C(48)	-0.0081 (7)	0.0235 (16)	0.1136 (5)	0.045 (6)
C(12)	0.3239 (8)	-0.2285 (18)	-0.0351 (7)	0.061 (8)	C(49)	0.0804 (6)	0.1145 (16)	0.2218 (6)	0.038 (6)
C(13)	0.3645 (8)	0.2555 (17)	0.0486 (7)	0.050 (7)	C(50)	0.0573 (6)	0.0087 (15)	0.2436 (6)	0.046 (7)
C(14)	0.4262 (9)	0.232 (2)	0.0576 (9)	0.102 (10)	C(51)	0.0340 (7)	0.0158 (19)	0.2925 (6)	0.060 (8)
C(15)	0.4613 (9)	0.290 (2)	0.0224 (9)	0.108 (12)	C(52)	0.0339 (7)	0.131 (2)	0.3199 (7)	0.060 (8)
C(16)	0.4363 (12)	0.369 (2)	-0.0197 (9)	0.104 (11)	C(53)	0.0588 (8)	0.2371 (17)	0.2996 (7)	0.054 (7)
C(17)	0.3745 (11)	0.392 (2)	-0.0307 (9)	0.099 (11)	C(54)	0.0826 (7)	0.2305 (16)	0.2502 (7)	0.052 (7)
C(18)	0.3403 (9)	0.3359 (18)	0.0037 (8)	0.075 (9)	C(55)	0.1032 (8)	0.2666 (15)	0.1306 (6)	0.040 (6)
C(19)	0.3342 (9)	0.293 (2)	0.1540 (7)	0.057 (8)	C(56)	0.1491 (8)	0.3488 (17)	0.1497 (7)	0.061 (8)
C(20)	0.3754 (10)	0.255 (2)	0.1992 (9)	0.085 (10)	C(57)	0.1466 (8)	0.475 (2)	0.1364 (7)	0.070 (8)
C(21)	0.3883 (13)	0.335 (3)	0.2435 (10)	0.111 (13)	C(58)	0.0938 (10)	0.5170 (17)	0.1014 (8)	0.070 (9)
C(22)	0.3619 (15)	0.450 (3)	0.2468 (12)	0.140 (15)	C(59)	0.0457 (9)	0.4369 (16)	0.0791 (6)	0.056 (8)
C(23)	0.3208 (13)	0.485 (2)	0.1998 (11)	0.131 (13)	C(60)	0.0497 (8)	0.3082 (17)	0.0956 (7)	0.056 (8)
C(24)	0.3049 (11)	0.409 (2)	0.1535 (8)	0.092 (10)	C 1(1)	0.4231 (4)	0.6493 (11)	0.1017 (4)	0.226 (6)
C(25)	0.3243 (7)	-0.0541 (16)	0.2746 (5)	0.040 (6)	Cl(2)	0.4968 (4)	0.8753 (13)	0.1228 (5)	0.278 (8)
C(26)	0.3625 (7)	0.0293(18)	0.3079 (6)	0.054 (6)	C(61)	0.4409 (16)	0.807 (3)	0.1080 (16)	0.27(3)

 ${}^{a}U_{eq} = {}^{1}/{}_{3}\sum_{i}\sum_{j}U_{ij}a^{*}{}_{i}a^{*}{}_{j}\mathbf{a}_{i}\mathbf{a}_{j}$

Figure 1. ¹³⁹Pt NMR spectrum of $Pt(PPh_3)_2[1,5-Ph_4P_2N_4S_2]$ (2a) in CDCl₃.

³¹P NMR chemical shifts of 1,5-diphosphathiatetrazocines, which appear to be related in some way to the structural constraint imposed by the cross-ring S-S interaction,^{11,26} is also noteworthy. Upfield shifts of the order 70-75 ppm are observed as a result of the loss of the transannular S-S interaction (Table I).

The reaction of $Pd(PPh_3)_4$ with 1a-c in toluene was only successful for the preparation of 3a (eq 2). The related complexes 4a,b were obtained by the treatment of $Pd(PPh_2Me)_4$ with 1a,b, respectively. As indicated in Table I, the ³¹P NMR spectra of 3a, 4a, and 4b exhibit two 1:2:1 triplets consistent with two pairs of inequivalent phosphorus atoms. The triplet structure is at-

Figure 2. ORTEP plot of $Pt(PPh_3)_2[1,5-Ph_4P_2N_4S_2]$ (2a) (50% probability ellipsoids).

tributed to the four-bond R'Ph₂P-R₂P coupling of ca. 13-15 Hz, which is significantly larger than the value of 4.4 Hz observed for the platinum complexes, **2a**,**b**. Coordination to palladium causes a less pronounced (ca. 60 ppm) upfield shift of the ³¹P NMR resonance of the 1,5-diphosphadithiatetrazocine ligand compared to the Pt complexes (70-75 ppm). The ³¹P NMR data strongly suggest that the structures of **3a**, **4a**, and **4b** are analogous to that of **2a**.

X-ray Structure of $Pt(PPh_3)_2(1,5-Ph_4P_2N_4S_2)$ (2a). The structure of 2a was determined by X-ray crystallography. The molecular geometry and atomic numbering scheme are given in Figure 2, and pertinent bond lengths and bond angles are listed in Table V. A better view of the conformation of the $P_2N_4S_2$

⁽²⁵⁾ Fackler, J. P., Jr.; Thompson, L. D.; Lin, I. J. B.; Stephenson, T. A.; Gould, R. O.; Alison, J. M. C.; Fraser, A. J. F. Inorg. Chem. 1982, 21, 2397.

⁽²⁶⁾ Chivers, T.; Dénès, G. Y.; Liblong, S. W.; Richardson, J. R. Inorg. Chem. 1989, 28, 3683.

Table V. Selected Bond Distances (Å) and Bond Angles (deg) for $Pt(PPh_3)_2(1,5-Ph_4P_2N_4S_2)\cdot CH_2Cl_2$

Bond Distances							
Pt(1)-S(1)	2.408 (4)	S(2) - N(3)	1.628 (13)				
Pt(1)-S(2)	2.341 (4)	S(2) - N(4)	1.635 (12)				
Pt(1) - P(3)	2.337 (4)	P(1) - N(1)	1.598 (12)				
Pt(1) - P(4)	2.344 (4)	P(1) - N(4)	1.627 (13)				
S(1)-N(1)	1.643 (11)	P(2) - N(2)	1.594 (14)				
S(1)-N(2)	1.629 (13)	P(2) - N(3)	1.602 (14)				
	Bond A	ngles					
S(1)-Pt(1)-S(2)	86.36 (13)	Pt(1)-S(2)-N(4)	4) 100.6 (5)				
S(1)-Pt(1)-P(4)	85.59 (14)	N(3)-S(2)-N(4)) 111.6 (7)				
S(2) - Pt(1) - P(3)	89.79 (14)	N(1) - P(1) - N(4)) 120.2 (d)				
P(3) - Pt(1) - P(4)	99.25 (14)	N(2) - P(2) - N(3)) 120.8 (7)				
Pt(1)-S(1)-N(1)	110.4 (4)	S(1)-N(1)-P(1)) 126.8 (7)				
Pt(1)-S(1)-N(2)	102.0 (5)	S(1)-N(2)-P(2)) 124.0 (8)				
N(1)-S(1)-N(2)	112.5 (6)	S(2)-N(3)-P(2)) 122.9 (8)				
Pt(1)-S(2)-N(3)	111.8 (5)	S(2)-N(4)-P(1)) 120.1 (7)				

ring is provided in Figure 3. The asymmetric unit consists of a molecule of 2a and a molecule of CH₂Cl₂ solvent, which is highly disordered. The eight-membered heterocyclic ligand in 2a is attached to platinum by two Pt-S bonds with distances of 2.408 (4) and 2.341 (4) Å and \angle SPtS = 86.4 (1)°. The approximately square planar coordination sphere of Pt is completed by two PPh₃ groups with d(Pt-P) = 2.337 (4) and 2.344 (4) Å and $\angle PPtP =$ 99.3 (1)°. The transannular S-S separation is opened up from 2.528 (1) Å in the free ligand, 1a,²⁷ to 3.250 (6) Å in 2a. The average S-N bond length increases slightly from 1.590 (3) to 1.634 (7) Å whereas the average P-N bond lengths are essentially unchanged at 1.621 (3) vs 1.605 (15) Å. The NSN angles are reduced from 116.1 (1)° in 1a to an average value of 112.1 (6)° in 2a, while the endocyclic bond angles at phosphorus increase from 110.8 (1) to 120.5 (5)° upon coordination to platinum. The endocyclic bond angles at nitrogen in 2a are in the range 120.1-126.8 (7)° (cf. 120.7 (2) and 121.2 (2)° for 1a).²⁷

Synthesis of Dimeric Platinum and Palladium Complexes of 1,5-Diphosphadithiatetrazocines and the Structure of 5a. The monomeric platinum and palladium complexes described above form dimeric complexes via loss of a phosphine ligand upon mild heating according to eqs 3 and 4. In the case of the conversion

$2Pt(PPh_3)_2(1,5-R_4P_2N_4S_2)$	$\frac{-2PPh_3}{Pt(PPh_3)(1,5-R_4P_2N_4S_2)]_2} \qquad (1)$	3)
2a or 2b	5a, R = Ph	
	5 b, R = Et	
$2Pd(PPh_2R')_2(1,5-R_4P_2N_4S_2)$	$\xrightarrow{-2PPh_2R'} [Pd(PPh_2R')(1,5-R_4P_2N_4S_2)]_2 ($	4)
3a, 4a or 4 b	6a , R = R ' = P h	
	7a, R' = Me, R = Ph	
	7b , $R' = Me$, $R = Et$	
2b into 5b and 4b into	7b, these reactions occur spontaneous	ly

of 2b into 5b and 4b into 7b, these reactions occur spontaneously in solution at 25 °C, whereas the formation of the other dimeric complexes requires heating either in solution (5a, toluene at reflux) or of the dry solid (6a and 7a). This observation is consistent with our recent finding that 1,5-Et₄P₂N₄S₂ binds more strongly than 1,5-Ph₄P₂N₄S₂ to platinum(II) in N-bonded complexes of the type *trans*-PtCl₂(PEt₃)(η^1 -Et₄P₂N₄S₂).²⁸

The reversibility of the transformations depicted in eqs 3 and 4 has been tested in two cases. The addition of 2 molar equiv of Ph_3P to a solution of 5a in CH_2Cl_2 resulted in the regeneration of the monomer 2a over the course of several days at room temperature as indicated by the ³¹P NMR spectrum. The regeneration of 3a from 6a in a similar manner occurred within 2 h at 23 °C.

The structure of 5a was shown by X-ray crystallography to consist of a centrosymmetric dimer in which the $P_2N_4S_2$ rings act as chelating (N,S) ligands toward one platinum atom and form

Figure 3. Conformation of the $P_2N_4S_2$ ring in 2a.

Figure 4. Variable-temperature 200-MHz ${}^{1}H{}^{31}P$ NMR spectra of $[Pt(PPh_{3})(1,5-Ph_{4}P_{2}N_{4}S_{2})]_{2}$ (5a) in CH₂Cl₂/CDCl₃ (1:1).

a bridge to a second platinum via the other sulfur atom. The structural details are given in the preliminary communication.¹⁰

³¹P NMR Spectra and Fluxional Behavior of Dimeric Pt and Pd Complexes of 1,5-Diphosphatetrazocines. As illustrated in Table II, the ³¹P NMR spectra of the dimeric Pt and Pd complexes 5a, 5b, 6a, 7a, and 7b reveal equivalent environments for the R_2P groups of the heterocyclic ligand *at room temperature* indicative of a fluxional process. At -58 °C the ³¹P NMR spectrum of 5a exhibits two equally intense singlets at +46.3 and +16.3 ppm for the inequivalent Ph₂P groups (see Figure 4) consistent with the observed solid structure. When the temperature of the solution is gradually raised, these two singlets broaden and collapse until at +25 °C a new singlet is apparent at +31.1 ppm. The reverse of these changes is observed when the solution is cooled again to -60 °C. The coalescence temperature is ca. -30 °C, which corresponds to an interconversion barrier of 10.2 ± 1.2 kcal mol^{-1.29}

⁽²⁷⁾ Burford, N.; Chivers, T.; Richardson, J. F. Inorg. Chem. 1983, 22, 1482.
(28) Chivers, T.; Hilts, R. W.; Parvez, M. Unpublished results.

⁽²⁹⁾ Sandström, J. Dynamic NMR Spectroscopy; Academic Press: New York, 1982.

A [1,3]-metallotropic rearrangement involving a pendular movement of the Ph₃P-Pt groups between vicinal nitrogen atoms has been proposed to account for these observations (see Scheme I of ref 10). The Pt dimer, 5b, exhibits similar fluxional behavior, At -71 °C the ³¹P NMR spectrum of 5b exhibits two equally intense signals at +73.8 and +40.2 ppm for the inequivalent Et_2P groups in addition to the signal for the two equivalent Ph₃P ligands at +12.9 ppm $[{}^{1}J({}^{31}P-{}^{195}Pt) = 4140 \text{ Hz}]$. The large value of ${}^{1}J({}^{195}Pt-{}^{31}P)$ (ca. 4200 Hz) for the dimers **5a**,b compared with the values of ca. 2850 Hz observed for this interaction in the monomers 2a-c is presumably a reflection of the weak trans influence of nitrogen in the dimers compared to sulfur in the monomers.30-32

When the temperature of the solution of **5b** is raised, the two signals for Et₂P groups broaden and collapse. However, an accurate coalescence temperature could not be obtained because 5b cocrystallizes with another product, but it appears to be higher than that of 5a consistent with stronger Pt-N bonding in 5b compared to that in 5a.²⁸ The ³¹P NMR spectrum of the other product at -60 °C in CH₂Cl₂ exhibits four equally intense resonances at 62.8, 53.2, 51.6, and 20.9 ppm, which we attribute to Et_2P groups, and two singlets at 13.8 and 12.9 ppm with ¹J-(³¹P-¹⁹⁵Pt) = 3655 and 4240 Hz, respectively, which we assigne to $Ph_{3}P$ groups. Thus, the composition of the other product appears to be similar to that of the dimers 5a,b, but it contains four inequivalent heterocyclic phosphorus atoms and two inequivalent, platinum-bound Ph₃P ligands. This product is also fluxional, and further studies are in progress in an attempt to isolate and structurally characterize it.

As indicated in Table II, the ³¹P NMR spectra of the Pd dimers 6a, 7a, and 7b at room temperature consist of a 1:1 doublet for the PR_2 groups and a 1:2:1 triplet for the PPh_2R' ligands with relative intensities of 2:1. The four-bond ³¹P-³¹P couplings, which are not observed for the Pt dimers, are in the range 9-15 Hz. In contrast to the Pt dimers, the resonances for the inequivalent PR₂ groups in the Pd dimers could not be resolved into the expected two components even at -90 °C. Thus, it appears that the energy barrier for the 1,3-shift is significantly lower when Pt is replaced by Pd in these dimers.

Conclusion. Zerovalent Pt or Pd complexes react readily with 1,5-diphosphadithiatetrazocines via insertion into the transannular S-S linkage to give mononuclear complexes of the type M- $(PPh_2R')_2(1,5-R_4P_2N_4S_2)$ (M = Pt, Pd; R = Ph, Et, Me; R' = Ph, Me) for which an η^2 -S,S' bonding mode has been established. These monomers readily lose one PR3 molecule to give the dimers $[M(PPh_3)(1,5-R_4P_2N_4S_2)]_2$ in which the heterocyclic ligand exhibits an η^2 -S, N- μ , η^1 -S' interaction with the metal centers. Both the Pt and Pd dimers undergo a facile fluxional process that probably involves a [1,3]-metallotropic rearrangement.

Acknowledgment. Financial support from the NSERC (Canada) is gratefully acknowledged. We thank Mr. K. J. Schmidt for obtaining the ¹⁹⁵Pt NMR spectrum of 2a and Dr. R. W. Hilts for helpful discussions.

Supplementary Material Available: Listings of crystal data and details of the structure determination, anisotropic thermal parameters, bond distances, bond angles, and torsion angles for non-hydrogen atoms (9 pages); a listing of observed and calculated structure factors (40 pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, California State University, Los Angeles, California 90032

Experimental and Ab-Initio Stability Correlations among Isomeric Methyl Derivatives of closo- and nido-Monocarbahexaboranes

Thomas Onak,* James Tseng, Dan Tran, Mario Correa, Sergio Herrera, and Joachin Arias

Received November 14, 1991

The relative stabilities of the various isomeric methyl derivatives of $closo-1-CB_{c}H_{7}$ and $nido-2-CB_{c}H_{9}$, determined by both experimental and calculational (MP2/6-31G*//3-21G) methods, are compared. Calculational results indicate a 1.5 kcal/mol lowering of the activation energy for bridging hydrogen tautomerization of CB₅H₇ when the terminal hydrogen attached to the cage carbon is replaced by a methyl group; this is in excellent agreement with experimental observations. The calculated equilibrium ratio of 2-CH₃-closo-1-CB₃H₆/4-CH₃-closo-1-CB₃H₆ is compared to both past and recent experimental results. The relative stabilities of the four CH₃-nido-2-CB₅H₈ isomers are correlated to synthetic reaction results as well as with isomer interconversion observations at elevated temperatures; kinetic vs equilibrium conclusions are reached.

Introduction

The structures of closo-1-CB₅ H_7^{1-3} and nido-2-CB₅ H_9^4 systems have been determined and found to be consistent with those previously proposed from the analyses of NMR data.⁵⁻¹⁵ The

- (1) McKown, G. L.; Don, B. P.; Beaudet, R. A.; Vergamini, P. J.; Jones,
- McKown, G. L., Don, B. P., Beaudet, K. A., Vergamini, P. J., Jones, L. H. J. Chem. Soc., Chem. Commun. 1974, 765.
 McKown, G. L.; Don, B. P.; Beaudet, R. A.; Vergamini, P. J.; Jones, L. H. J. Am. Chem. Soc. 1976, 98, 6909.
 McNeill, E. A.; Scholer, F. R. Inorg. Chem. 1975, 14, 1081.
 Cheung, C.-C. S.; Beaudet, R. A. Inorg. Chem. 1971, 10, 1144.
 Onak, T.; Drake, R.; Dunks, G. J. Am. Chem. Soc. 1965, 87, 2505.
 Conk, T.; Ducks, G. B. Szialman, L. B.; Chepter, E. L.; Williors, E.

- (6) Onak, T.; Dunks, G. B.; Spielman, J. R.; Gerhart, F. J.; Williams, R. E. J. Am. Chem. Soc. 1966, 88, 2061-2062.
- (7) Dunks, G. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1968, 90, 7355; Inorg. Chem. 1969, 8, 2667
- (8) Prince, S. R.; Schaeffer, R. J. Chem. Soc., Chem. Commun. 1968, 451-452
- Onak, T.; Mattschei, P.; Groszek, E. J. Chem. Soc. A 1969, 1990-1992.
- (10) Onak, T.; Spielman, J. J. Magn. Reson. 1970, 39, 122-133.

(near) octahedral structure of closo-1-CB₅H₇ has also been examined by various calculational methods, PRDDO,¹⁶ MNDO,¹⁷ AM1 calculations,¹⁸ and ab-initio (with full geometry optimization at the STO-3G level using the Gaussian-80 code)¹⁹ MO calcu-

- (11) Onak, T.; Leach, J. B. J. Chem. Soc., Chem. Commun. 1971, 76-77.
- (12) Groszek, E.; Leach, J. B.; Wong, G. T. F.; Ungermann, C.; Onak, T. *Inorg. Chem.* 1971, 10, 2770–2775.
 (13) Onak, T.; Wan, E. J. Chem. Soc. A 1974, 665–669.
 (14) Onak, T.; Leach, J. B.; Anderson, S.; Frisch, M. J.; Marynick, D. J. Magn. Reson. 1976, 23, 237–248.
- Onak, T.; Jarvis, W. J. Magn. Reson. 1979, 33, 649-654.
- (16)Lambris, S. K.; Marynick, D. S.; Lipscomb, W. N. Inorg. Chem. 1978,
- 17, 3706-3707 Dewar, M. J. S.; McKee, M. L. J. Am. Chem. Soc. 1977, 99, (17)
- 5231-5241 (18) Dewar, M. J. S.; Jie, C.; Zoebisch, E. G. Organometallics 1988, 7, 513-521.
- Brint, P.; Healy, E. F.; Spalding, T. R. J. Chem. Soc., Dalton Trans. (19)1981, 2515-2522.

⁽³⁰⁾ Higgins, S. J.; Taylor, R.; Shaw, B. L. J. Organomet. Chem. 1987, 325, 285.

Uson, R.; Royo, P.; Gimeno, J. J. Organomet. Chem. 1974, 72, 299. (32) Berry, D. E.; Browning, J.; Dixon, K. R.; Hilts, R. W. Can. J. Chem. 1988, 66, 1272.